skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Rucklidge, Alastair M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Microbial populations generally evolve in volatile environments, under conditions fluctuating between harsh and mild, e.g. as the result of sudden changes in toxin concentration or nutrient abundance. Environmental variability (EV) thus shapes the long-time population dynamics, notably by influencing the ability of different strains of microorganisms to coexist. Inspired by the evolution of antimicrobial resistance, we study the dynamics of a community consisting of two competing strains subject to twofold EV. The level of toxin varies in time, favouring the growth of one strain under low drug concentration and the other strain when the toxin level is high. We also model time-changing resource abundance by a randomly switching carrying capacity that drives the fluctuating size of the community. While one strain dominates in a static environment, we show that species coexistence is possible in the presence of EV. By computational and analytical means, we determine the environmental conditions under which long-lived coexistence is possible and when it is almost certain. Notably, we study the circumstances under which environmental and demographic fluctuations promote, or hinder, the strains coexistence. We also determine how the make-up of the coexistence phase and the average abundance of each strain depend on the EV. 
    more » « less
  2. There is a pressing need to better understand how microbial populations respond to antimicrobial drugs, and to find mechanisms to possibly eradicate antimicrobial-resistant cells. The inactivation of antimicrobials by resistant microbes can often be viewed as a cooperative behaviour leading to the coexistence of resistant and sensitive cells in large populations and static environments. This picture is, however, greatly altered by the fluctuations arising in volatile environments, in which microbial communities commonly evolve. Here, we study the eco-evolutionary dynamics of a population consisting of an antimicrobial-resistant strain and microbes sensitive to antimicrobial drugs in a time-fluctuating environment, modelled by a carrying capacity randomly switching between states of abundance and scarcity. We assume that antimicrobial resistance (AMR) is a shared public good when the number of resistant cells exceeds a certain threshold. Eco-evolutionary dynamics is thus characterised by demographic noise (birth and death events) coupled to environmental fluctuations which can cause population bottlenecks. By combining analytical and computational means, we determine the environmental conditions for the long-lived coexistence and fixation of both strains, and characterise afluctuation-drivenAMR eradication mechanism, where resistant microbes experience bottlenecks leading to extinction. We also discuss the possible applications of our findings to laboratory-controlled experiments. 
    more » « less
  3. null (Ed.)
    Abstract Non-topological defects in spatial patterns such as grain boundaries in crystalline materials arise from local variations of the pattern properties such as amplitude, wavelength and orientation. Such non-topological defects may be treated as spatially localized structures, i.e. as fronts connecting distinct periodic states. Using the two-dimensional quadratic-cubic Swift–Hohenberg equation, we obtain fully nonlinear equilibria containing grain boundaries that separate a patch of hexagons with one orientation (the grain) from an identical hexagonal state with a different orientation (the background). These grain boundaries take the form of closed curves with multiple penta-hepta defects that arise from local orientation mismatches between the two competing hexagonal structures. Multiple isolas occurring robustly over a wide range of parameters are obtained even in the absence of a unique Maxwell point, underlining the importance of retaining pinning when analysing patterns with defects, an effect omitted from the commonly used amplitude-phase description. Similar results are obtained for quasiperiodic structures in a two-scale phase-field model. 
    more » « less